IdentifyMaxOnXY.Rd
To generate a curve of points, interpolation is used and the range and increment can be specified. Will output a message if multiple maxima are detected.
IdentifyMaxOnXY(x_vector, y_vector, x_start = 0, x_end, x_increment)
x_vector | A numerical vector with x coordinates. |
---|---|
y_vector | A numerical vector with y coordinates. |
x_start | Numeric value specifying start of x value to look at. |
x_end | Numeric value specifying end of x value to look at. |
x_increment | Numeric value specifying the increment of the x-values to use. |
A vector with two elements, The first element is the x value where the max y value is found. The second element is the max y value.
#I want to create a plot that shows two curves: #1. Composite of time series signals 1, 2, and 3. #2. Composite of time series signals 3 and 4. #Create a vector of time that represent times where data are sampled. Fs = 100; #sampling frequency in Hz T = 1/Fs; #sampling period L = 1000; #length of time vector t = (0:(L-1))*T; #time vector #First signal #1. 1 Hz with amplitude of 2 S1 <- 2*sin(2*pi*1*t) level1.vals <- rep("a", length(S1)) level2.vals <- rep("1", length(S1)) S1.data.frame <- as.data.frame(cbind(t, S1, level1.vals, level2.vals)) colnames(S1.data.frame) <- c("Time", "Signal", "level1.ID", "level2.ID") S1.data.frame[,"Signal"] <- as.numeric(S1.data.frame[,"Signal"]) #Second signal #1. 1 Hz with amplitude of -4 #2. 2 Hz with amplitude of -2 S2 <- (-4)*sin(2*pi*1*t) - 2*sin(2*pi*2*t); level1.vals <- rep("a", length(S2)) level2.vals <- rep("2", length(S2)) S2.data.frame <- as.data.frame(cbind(t, S2, level1.vals, level2.vals)) colnames(S2.data.frame) <- c("Time", "Signal", "level1.ID", "level2.ID") S2.data.frame[,"Signal"] <- as.numeric(S2.data.frame[,"Signal"]) #Third signal #1. 1 Hz with amplitude of 2 #2. 2 Hz with amplitude of 2 S3 <- 2*sin(2*pi*1*t) + 2*sin(2*pi*2*t); level1.vals <- rep("a", length(S3)) level2.vals <- rep("3", length(S3)) S3.data.frame <- as.data.frame(cbind(t, S3, level1.vals, level2.vals)) colnames(S3.data.frame) <- c("Time", "Signal", "level1.ID", "level2.ID") S3.data.frame[,"Signal"] <- as.numeric(S3.data.frame[,"Signal"]) #Fourth signal #1. 1 Hz with amplitude of -2 S4 <- -2*sin(2*pi*1*t) level1.vals <- rep("b", length(S4)) level2.vals <- rep("3", length(S4)) S4.data.frame <- as.data.frame(cbind(t, S4, level1.vals, level2.vals)) colnames(S4.data.frame) <- c("Time", "Signal", "level1.ID", "level2.ID") S4.data.frame[,"Signal"] <- as.numeric(S4.data.frame[,"Signal"]) #Extra representation of S2 dataframe to show an example that has enough samples #to have significance for Kruskal-Wallis test windows <- list(S1.data.frame, S2.data.frame, S2.data.frame, S2.data.frame, S2.data.frame, S2.data.frame, S2.data.frame, S2.data.frame, S2.data.frame, S2.data.frame, S3.data.frame, S4.data.frame) #Gets the composite of the first, second, and third signal. Should result in a flat signal. FirstComboToUse <- list( c("a"), c(1, 2, 3) ) #Gets the composite of the third and fourth signal SecondComboToUse <- list( c("a", "b"), c(3) ) #PSD------------------------------------------------------------------------- PSD.results <- AutomatedCompositePlotting(list.of.windows = windows, name.of.col.containing.time.series = "Signal", x_start = 0, x_end = 10, x_increment = 0.01, level1.column.name = "level1.ID", level2.column.name = "level2.ID", level.combinations = list(FirstComboToUse, SecondComboToUse), level.combinations.labels = c("Signal 1 + 2 + 3", "Signal 3 + 4"), plot.title = "Example", plot.xlab = "Hz", plot.ylab = "(Original units)^2/Hz", combination.index.for.envelope = 2, TimeSeries.PSD.LogPSD = "PSD", sampling_frequency = 100)#> Warning: cannot compute exact p-value with tiesggplot.obj.PSD <- PSD.results[[2]] dataframes.plotted <- PSD.results[[1]] first.curve <- dataframes.plotted[[1]] second.curve <- dataframes.plotted[[2]] first.curve.max <- IdentifyMaxOnXY(first.curve$xvals, first.curve$yvals, 0, 10, 0.01) first.curve.max.limited <- IdentifyMaxOnXY(first.curve$xvals, first.curve$yvals, 1.25, 2.5, 0.01) second.curve.max <- IdentifyMaxOnXY(second.curve$xvals, second.curve$yvals, 0, 10, 0.01)