RemoveSamplesWithInstability.RdThis function uses the StabilityTestingAcrossVisits() function, and then uses the results to subset the inputted data.
RemoveSamplesWithInstability( inputted.data, col.name.of.unique.identifier, value.to.evaluate, standard.deviation.threshold )
| inputted.data | A dataframe |
|---|---|
| col.name.of.unique.identifier | A string that specifies name of column in inputted.data containing unique identifiers. |
| value.to.evaluate | A string that specifies name of column in inputted.data to look at for stability of values. |
| standard.deviation.threshold | A numeric value that specifies the value of the standard deviation that is considered large enough to say vists for a single sample is too unstable. |
A dataframe where only rows from stable samples remain.
Samples with only a single visit are removed. Additionally, samples that have values that differ significantly (stddev greater than a specified threshold) are also removed.
Other Preprocessing functions:
AddColBinnedToBinary(),
AddColBinnedToQuartiles(),
AddPCsToEnd(),
ConvertDataToPercentiles(),
CorAssoTestMultipleWithErrorHandling(),
DownSampleDataframe(),
GenerateElbowPlotPCA(),
GeneratePC1andPC2PlotsWithAndWithoutOutliers(),
Log2TargetDensityPlotComparison(),
LookAtPCFeatureLoadings(),
MultipleColumnsNormalCheckThenBoxCox(),
NormalCheckThenBoxCoxTransform(),
RanomlySelectOneRowForEach(),
RecodeIdentifier(),
RemoveColWithAllZeros(),
RemoveRowsBasedOnCol(),
SplitIntoTrainTest(),
StabilityTestingAcrossVisits(),
SubsetDataByContinuousCol(),
TwoSampleTTest(),
ZScoreChallengeOutliers(),
captureSessionInfo(),
correlation.association.test(),
describeNumericalColumnsWithLevels(),
describeNumericalColumns(),
generate.descriptive.plots.save.pdf(),
generate.descriptive.plots()
identifier.col <- c("a", "a", "a", "b", "b", "b", "c") value.col <- c(1, 2, 3, 1, 1, 1, 5) input.data.frame <- as.data.frame(cbind(identifier.col, value.col)) results <- RemoveSamplesWithInstability(input.data.frame, "identifier.col", "value.col", 0.5) results#> identifier.col value.col #> 4 b 1 #> 5 b 1 #> 6 b 1