NormalCheckThenBoxCoxTransform.RdCannot use boxcox if data has zeroes. If data has zeros, then do this: Add 1 if most values are greater than 1, else if most of values <1, multiply 10 or 100, then add 1. Then do boxcox.
NormalCheckThenBoxCoxTransform(input.data, alpha.for.shapiro)
| input.data | A numerical data vector. |
|---|---|
| alpha.for.shapiro | Numerical value from 0 to 1. Threshold for what is considered not normal. If p-value is less than this threshold, then the data is considered not normal. |
A List with 4 elements:
If data is non-normal, then a vector of the transformed data is outputted. If data is normal, then this is NULL.
If data is non-normal, then a number specifying the lambda used for boxcox is outputted. If data is normal, then this is NULL.
P-value from the Shapiro test.
Boolean indicating if boxcox transformation was performed.
Other Preprocessing functions:
AddColBinnedToBinary(),
AddColBinnedToQuartiles(),
AddPCsToEnd(),
ConvertDataToPercentiles(),
CorAssoTestMultipleWithErrorHandling(),
DownSampleDataframe(),
GenerateElbowPlotPCA(),
GeneratePC1andPC2PlotsWithAndWithoutOutliers(),
Log2TargetDensityPlotComparison(),
LookAtPCFeatureLoadings(),
MultipleColumnsNormalCheckThenBoxCox(),
RanomlySelectOneRowForEach(),
RecodeIdentifier(),
RemoveColWithAllZeros(),
RemoveRowsBasedOnCol(),
RemoveSamplesWithInstability(),
SplitIntoTrainTest(),
StabilityTestingAcrossVisits(),
SubsetDataByContinuousCol(),
TwoSampleTTest(),
ZScoreChallengeOutliers(),
captureSessionInfo(),
correlation.association.test(),
describeNumericalColumnsWithLevels(),
describeNumericalColumns(),
generate.descriptive.plots.save.pdf(),
generate.descriptive.plots()