MultipleColumnsNormalCheckThenBoxCox.RdChecks multiple columns in a dataframe to see if each is normally distributed. If not, then box-cox transform
MultipleColumnsNormalCheckThenBoxCox( input.data, names.of.dependent.variables, alpha.for.shapiro, output.lambda.in.col.name = TRUE )
| input.data | A dataframe. |
|---|---|
| names.of.dependent.variables | Vector of strings where each element is the name of a column to assess for normality and potentially transform. |
| alpha.for.shapiro | Numerical value from 0 to 1. Threshold for what is considered not normal. If p-value is less than this threshold, then the data is considered not normal. |
| output.lambda.in.col.name | Boolean indicating if the lambda used for boxcox should be included in the column name. |
A dataframe with the columns specified in names.of.dependent.variables.
Other Preprocessing functions:
AddColBinnedToBinary(),
AddColBinnedToQuartiles(),
AddPCsToEnd(),
ConvertDataToPercentiles(),
CorAssoTestMultipleWithErrorHandling(),
DownSampleDataframe(),
GenerateElbowPlotPCA(),
GeneratePC1andPC2PlotsWithAndWithoutOutliers(),
Log2TargetDensityPlotComparison(),
LookAtPCFeatureLoadings(),
NormalCheckThenBoxCoxTransform(),
RanomlySelectOneRowForEach(),
RecodeIdentifier(),
RemoveColWithAllZeros(),
RemoveRowsBasedOnCol(),
RemoveSamplesWithInstability(),
SplitIntoTrainTest(),
StabilityTestingAcrossVisits(),
SubsetDataByContinuousCol(),
TwoSampleTTest(),
ZScoreChallengeOutliers(),
captureSessionInfo(),
correlation.association.test(),
describeNumericalColumnsWithLevels(),
describeNumericalColumns(),
generate.descriptive.plots.save.pdf(),
generate.descriptive.plots()