Returns information that can be used to determine if the homogeneity of variance, an assumption for ANCOVA, is met.

HomogeneityOfVariance(inputted.data, dependent.variable, independent.variable)

Arguments

inputted.data

A dataframe

dependent.variable

A string that specifies the column name of the column to use as the dependent variable. Column must be numeric.

independent.variable

A string that specifies the column name of the column to use as the independent variable. Column can be numeric or factor. If it's a factor, then it can only have two levels.

Value

A matrix with two rows. The first row specify what the values are in the second row. The second row: The first element is the formula used to evaluate Levene test. The next element is the p-value from the Levene test.

Details

To test homogeneity of regression slopes, the Levene test is used. If the p-value is significant, then this means the assumption of homogeneity of variance is not met.

Examples

dependent.col <- c(10.1, 11.3, 12.1, 13.7, 14.2, 1.6, 2.3, 3.2, 4.1, 5.3) independent.col <- as.factor(c(1, 1, 1, 1, 1, 0, 0, 0, 0, 0)) covariate.one.col <- c(1, 2, 3, 4, 5, 1, 2, 3, 4, 5) covariate.two.col <- as.factor(c(1, 0, 1, 0, 1, 0, 1, 0, 1, 0)) inputted.data <- data.frame(dependent.col, independent.col, covariate.one.col, covariate.two.col) results <- HomogeneityOfVariance(inputted.data, "dependent.col", "independent.col") results
#> [,1] [,2] #> row1 "Levene Formula (test for homogeneity of variance)" "Levene P-value" #> row2 "dependent.col~independent.col" "0.717668447871424"